

A NOTE ON PRIMITIVE MATRICES+

I. N. Herstein

P-344 / B)

12 November 1952

Approved for OTS release

COPY _____ OF ____ |
HARD COPY \$. 1.00
MICROFICHE \$. 0.50

Research undertaken under contract between the Cowles Commission for Research in Economics and The RAND Corporation

A Note on Primitive Matrice

I. N. Herstein

November 12, 1952

Suppose that A is a square matrix consisting of nonnegative elements. In certain considerations it is important to know when all the elements of some power of A are strictly positive. Frobenius [2] gave a very simple necessary and sufficient condition for this to happen. In this note we give a simple proof of this result. / Our proof is algebraic in nature and avoids the use of the convergence of powers of a matrix.

All matrices considered here will have real elements. For two such matrices (not necessarily square) $B = (b_{11})$, $C = (c_{11})$ we define

$$B \stackrel{?}{=} C$$
 if $b_{ij} \stackrel{?}{=} c_{ij}$ for each i, j.

$$B \ge C$$
 if $B \stackrel{?}{=} C$ but $B \not= C$

$$B > C$$
 if $b_{ij} > c_{ij}$ for each i, j.

A square matrix $A \ge 0$ (A is then called nonnegative) is said to be indecomposable if for no permutation matrix P does

$$PAP^{-1} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$
 where the A_{ii} are square submatrices.

The fundamental result about nonnegative, indecomposable matrices is due to Frobenius [2]; this, and other, results have recently been rederived and extended in a greatly simplified manner by Wielandt [3] and Debreu and Herstein [1]. It is

THEOREM. Let A = 0 be an indecomposable matrix. Then A has a positive characteristic root r such that

1. r is a simple root.

- 2. to r can be associated a characteristic vector x > 0.
- 3. if a is any other characteristic root of A, | a | in.

If $\Delta > 0$ then 3. can be sharpened to $| \alpha | \in r$ for all characteristic roots $\ll r$ of Δ .

In this paper we prove the

THEOREM* (Probenius). Let $A \ge 0$. Then $A^m > 0$ for some integer m > 0 if and only if A is primitive.

Suppose that $A^m > 0$. Then A must be indecomposable; for if $PAP^{-1} = \begin{pmatrix} B & C \\ & & \\ 0 & D \end{pmatrix} \quad \text{then } PA^mP^{-1} = \begin{pmatrix} B^m & C \\ & & \\ & & \\ 0 & D^m \end{pmatrix} \quad \text{contradicting } A^m > 0.$

Now suppose that r and $re^{i\psi} \neq r$ are characteristic roots of A of maximal absolute value. Then A^m , A^{m+1} are both positive and have r^m , $r^me^{im\psi}$, and r^{m+1} , $r^{m+1}e^{i(m+1)\psi}$ respectively as roots of maximal absolute value. Since the largest root of a positive matrix is simple and is actually greater than any other root in absolute value. We must have $r^me^{im\psi} = r^m$, $r^{m+1}e^{i(m+1)\psi} = r^{m+1}$, whence $e^{i\psi} = 1$, a contradiction.

There remains but to show that if A is primitive then $A^m > 0$ for a suitable integer m > 0. This will be proved as a consequence of the following few lemmas, which by themselves are of some interest.

Lemma 1. If A is primitive then A^{m} is primitive for every positive integer m.

Proof. Since r is a simple root of A and is the only root of A of absolute value r, r^m is a simple root of A^m and is the only root of A^m of absolute value r^m . So we need but show that A^m is indecomposable for every integer

m > 0. Suppose that for some s A is not indecomposable; we can then assume that A = $\begin{pmatrix} B & C \\ O & D \end{pmatrix}$. Now Ax = rx for x > C, so A x = r x; partition x according to the partitioning of A and we have $\begin{pmatrix} B & C \\ O & D \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = r^s \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

That is $Dx_2 = r^*x_2$, and since x_2 is positive, r^* is a characteristic root of D. Since the transpose, A', of A is also indecomposable, we have A'Y = rY for Y > 0. Partitioning as above we obtain that r^* is a characteristic root of B', and so of B. Being a characteristic root of both B and D' must be a multiple root of A'', which is a contradiction. The lemma is thereby proved.

Lemma 2. (Wielandt). Let ϵ be any positive number. Suppose A 2 0 is an nxm indecomposable matrix. Then $(\epsilon I+A)^{n-1} > 0$ where I is the identity matrix.

<u>Proof.</u> It clearly suffices to show that for any vector x, $x \ge 0$, $(\in I+A)^{n-1} \times > 0$. Let

$$x_{ij} = (\in I+A)^{\sqrt{-1}} x$$
. Then $x_{ij+1} = e x_{ij} + Ax_{ij}$.

Hence a zero component can occur in \mathbf{x}_{j+1} only where a zero component already occured in \mathbf{x}_j . However, not every such zero component can be preserved in \mathbf{x}_{j+1} . For if so, by a suitable reordering of the coordinates,

$$x_{j} = \begin{pmatrix} p \\ 0 \end{pmatrix}$$
, $p > 0$, whence $x_{j+1} = \xi \begin{pmatrix} p \\ 0 \end{pmatrix} + \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} p \\ 0 \end{pmatrix} = \begin{pmatrix} q \\ 0 \end{pmatrix}$,

from which it follows that $A_{21}p = 0$. This together with p > 0 forces $A_{21} = 0$, violating the indecomposability of A. So each application of EI + A to x decreases the number of zero coordinates by at least one. Hence $(EI + A)^{n-1}x > 0$.

As an easy consequence of Lemma 2 we obtain

Lemma 3. If $A = (a_{ij})$ is indecomposable and $a_{ii} > 0$ for each i then $A^{n-1} > 0$.

For let ξ be chosen satisfying $0 \le \xi \le \min_{i} a_{ii}$. Then $A = \xi I + B$ where $B \ge 0$ is indecomposable. Lemma 2 then yields $A^{n+1} > 0$.

Let $A^{m} = (a_{1,j}^{(m)})$. Then we have

Lemma 4. Let $A \stackrel{>}{=} 0$ be indecomposable. Then for any i, j we can find an m = a(i,j) > 0 so that $a_{i,j}^{(m)} > 0$.

Proof. Consider first the case i # j. Since

 $(I+A)^{n-1} = A^{n-1} + \binom{n-1}{1} A^{n-2} + \ldots + I > 0$ by Lemma 2, $a_{ij}^{(m)} > 0$ for some m = n-1. Now suppose i = j. Since A is indecomposable, no column of zeros can occur in A. So there is a k with $a_{ki} > 0$. If k = i then $a_{ii}^{(m)} > 0$ for all m trivially. If, on the other hand, $k \neq i$, then $a_{ik}^{(m)} > 0$ for some m, and since $a_{ii}^{(m+1)} = \sum_{i} a_{ii}^{(m)} = a_{ik}^{(m)} a_{ki} > 0$ the lemma is proved.

We are now in position to complete the proof of Theorem. Let A be primitive. Pick m_1 so that in A, a_{11} , 0. Let $A_1 = A^{m_1} = (a_{1j}(1))$. By Lemma 1 A_1 is primitive, so there is an m_2 such that in $A_1^{m_2}$, $(m_2)^{m_2}$, $(m_2)^{m_2}$, $(m_1)^{m_2}$, $(m_2)^{m_2}$, which is primitive and whose diagonal elements are all positive. By Lemma 3 A_1^t > 0 for some t, hence A_1^m > 0 for some suitably chosen integer m_2 .

Cowles Commission for Research in Economics and The University of Chicago

FOOTNOTES

- 1. This paper is a result of the work being done at the Cowles Commission for Research in Economics on the "Theory of Resource Allocation" under subcontract to the RAND Corporation.
- 2. Numbers in square brackets refer to the bibliography at the end of this paper.

BIBLIOGRAPHY

- 1. Debreu, Gerard and Herstein, I. N., "Nonnegative Square Matrices."

 (forthcoming).
- 2. Frobenius, G., "Uber Matrisen aus nicht negativen Elementen,"

 Sitzungeberichte der Berliner Akadamie, 1912, p. 456-477.
- 3. Wielandt, H., "Unzerlegoare, nicht negative Matrizen," Mathematische Zeitschrift, Vol. 52, 1950, p. 642-648.